Ontologies for Probabilistic Networks
نویسندگان
چکیده
Building a probabilistic network for a real-life domain of application is a hard and time-consuming process, which is generally performed with the help of domain experts. As the scope and, hence, the size and complexity of networks are increasing, the need for proper documentation of the elicited domain knowledge becomes apparent. To study the usefulness of ontologies for this purpose, we constructed an ontology for the domain of oesophageal cancer, based upon a real-life probabilistic network for the staging of cancer of the oesophagus and the knowledge elicited for its construction. In this paper, we describe the various components of our ontology and outline the benefits of using ontologies in engineering probabilistic networks.
منابع مشابه
An Extended Maritime Domain Awareness Probabilistic Ontology Derived from Human-aided Multi-Entity Bayesian Networks Learning
Ontologies have been commonly associated with representing a domain using deterministic information. Probabilistic Ontologies extend this capability by incorporating formal probabilistic semantics. PR-OWL is a language that extends OWL with semantics based on Multi-Entity Bayesian Networks (MEBN), a Bayesian probabilistic logic. Developing probabilistic ontologies can be greatly facilitated by ...
متن کاملLPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring
Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...
متن کاملProbabilistic Contaminant Source Identification in Water Distribution Infrastructure Systems
Large water distribution systems can be highly vulnerable to penetration of contaminant factors caused by different means including deliberate contamination injections. As contaminants quickly spread into a water distribution network, rapid characterization of the pollution source has a high measure of importance for early warning assessment and disaster management. In this paper, a methodology...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملModeling Degrees of Conceptual Overlap in Semantic Web Ontologies
Semantic Web ontologies are based on crisp logic and do not provide well-defined means for expressing uncertainty. We present a new probabilistic method to approach the problem. In our method, degrees of subsumption, i.e., overlap between concepts can be modeled and computed efficiently using Bayesian networks based on RDF(S) ontologies.
متن کامل